時間:2023-03-20 16:26:06
導言:作為寫作愛好者,不可錯過為您精心挑選的10篇繼電保護論文,它們將為您的寫作提供全新的視角,我們衷心期待您的閱讀,并希望這些內容能為您提供靈感和參考。
1前言
電力作為當今社會的主要能源,對國民經濟的發展和人民生活水平的提高起著極其重要的作用。現代電力系統是一個由電能產生、輸送、分配和用電環節組成的大系統。電力系統的飛速發展對電力系統的繼電保護不斷提出新的要求,近年來,電子技術及計算機通信技術的飛速發展為繼電保護技術的發展注入了新的活力。如何正確應用繼電保護技術來遏制電氣故障,提高電力系統的運行效率及運行質量已成為迫切需要解決的技術問題。
2繼電保護發展的現狀
上世紀60年代到80年代是晶體管繼電保護技術蓬勃發展和廣泛應用的時期。70年代中期起,基于集成運算放大器的集成電路保護投入研究,到80年代末集成電路保護技術已形成完整系列,并逐漸取代晶體管保護技術,集成電路保護技術的研制、生產、應用的主導地位持續到90年代初。與此同時,我國從70年代末即已開始了計算機繼電保護的研究,高等院校和科研院所起著先導的作用,相繼研制了不同原理、不同型式的微機保護裝置。1984年原東北電力學院研制的輸電線路微機保護裝置首先通過鑒定,并在系統中獲得應用,揭開了我國繼電保護發展史上新的一頁,為微機保護的推廣開辟了道路。在主設備保護方面,關于發電機失磁保護、發電機保護和發電機-變壓器組保護、微機線路保護裝置、微機相電壓補償方式高頻保護、正序故障分量方向高頻保護等也相繼通過鑒定,至此,不同原理、不同機型的微機線路保護裝置為電力系統提供了新一代性能優良、功能齊全、工作可靠的繼電保護裝置。隨著微機保護裝置的研究,在微機保護軟件、算法等方面也取得了很多理論成果,此時,我國繼電保護技術進入了微機保護的時代。
目前,繼電保護向計算機化、網絡化方向發展,保護、控制、測量、數據通信一體化和人工智能化對繼電保護提出了艱巨的任務,也開辟了研究開發的新天地。隨著改革開放的不斷深入、國民經濟的快速發展,電力系統繼電保護技術將為我國經濟的大發展做出貢獻。
3電力系統中繼電保護的配置與應用
3.1繼電保護裝置的任務
繼電保護主要利用電力系統中原件發生短路或異常情況時電氣量(電流、電壓、功率等)的變化來構成繼電保護動作。繼電保護裝置的任務在于:在供電系統運行正常時,安全地。完整地監視各種設備的運行狀況,為值班人員提供可靠的運行依據;供電系統發生故障時,自動地、迅速地、并有選擇地切除故障部分,保證非故障部分繼續運行;當供電系統中出現異常運行工作狀況時,它應能及時、準確地發出信號或警報,通知值班人員盡快做出處理。
3.2繼電保護裝置的基本要求
選擇性。當供電系統中發生故障時,繼電保護裝置應能選擇性地將故障部分切除。首先斷開距離故障點最近的斷路器,以保證系統中其它非故障部分能繼續正常運行。
靈敏性。保護裝置靈敏與否一般用靈敏系數來衡量。在繼電保護裝置的保護范圍內,不管短路點的位置如何、不論短路的性質怎樣,保護裝置均不應產生拒絕動作;但在保護區外發生故障時,又不應該產生錯誤動作。
速動性。是指保護裝置應盡可能快地切除短路故障。縮短切除故障的時間以減輕短路電流對電氣設備的損壞程度,加快系統電壓的恢復,從而為電氣設備的自啟動創造了有利條件,同時還提高了發電機并列運行的穩定性。
可靠性。保護裝置如不能滿足可靠性的要求,反而會成為擴大事故或直接造成故障的根源。為確保保護裝置動作的可靠性,必須確保保護裝置的設計原理、整定計算、安裝調試正確無誤;同時要求組成保護裝置的各元件的質量可靠、運行維護得當、系統簡化有效,以提高保護的可靠性。
3.3保護裝置的應用
繼電保護裝置廣泛應用于工廠企業高壓供電系統、變電站等,用于高壓供電系統線路保護、主變保護、電容器保護等。高壓供電系統分母線繼電保護裝置的應用,對于不并列運行的分段母線裝設電流速斷保護,但僅在斷路器合閘的瞬間投入,合閘后自動解除。另外,還應裝設過電流保護,對于負荷等級較低的配電所則可不裝設保護。變電站繼電保護裝置的應用包括:①線路保護:一般采用二段式或三段式電流保護,其中一段為電流速斷保護,二段為限時電流速斷保護,三段為過電流保護。②母聯保護:需同時裝設限時電流速斷保護和過電流保護。③主變保護:主變保護包括主保護和后備保護,主保護一般為重瓦斯保護、差動保護,后備保護為復合電壓過流保護、過負荷保護。④電容器保護:對電容器的保護包括過流保護、零序電壓保護、過壓保護及失壓保護。隨著繼電保護技術的飛速發展,微機保護的裝置逐漸投入使用,由于生產廠家的不同、開發時間的先后,微機保護呈現豐富多彩、各顯神通的局面,但基本原理及要達到的目的基本一致。4繼電保護裝置的維護
值班人員定時對繼電保護裝置巡視和檢查,并做好各儀表的運行記錄。在繼電保護運行過程中,發現異常現象時,應加強監視并向主管部門報告。
建立崗位責任制,做到每個盤柜有值班人員負責。做到人人有崗、每崗有人。值班人員對保護裝置的操作,一般只允許接通或斷開壓板,切換開關及卸裝熔絲等工作,工作過程中應嚴格遵守電業安全工作規定。
做好繼電保護裝置的清掃工作。清掃工作必須由兩人進行,防止誤碰運行設備,注意與帶電設備保持安全距離,避免人身觸電和造成二次回路短路、接地事故。對微機保護的電流、電壓采樣值每周記錄一次,每月對微機保護的打印機進行定期檢查并打印。
定期對繼電保護裝置檢修及設備查評:①檢查二次設備各元件標志、名稱是否齊全;②檢查轉換開關、各種按鈕、動作是否靈活無卡涉,動作靈活。接點接觸有無足夠壓力和燒傷;③檢查控制室光字牌、紅綠指示燈泡是否完好;④檢查各盤柜上表計、繼電器及接線端子螺釘有無松動;⑤檢查電壓互感器、電流互感器二次引線端子是否完好;⑥配線是否整齊,固定卡子有無脫落;⑦檢查斷路器的操作機構動作是否正常。
根據每年對繼電保護裝置的定期查評,按情節將設備分為三類:經過運行檢驗,技術狀況良好無缺陷,能保證安全、經濟運行的設備為一類設備;設備基本完好、個別零件雖有一般缺陷,但尚能安全運行,不危及人身、設備安全為二類設備。有重大缺陷的設備,危及安全運行,出力降低,"三漏"情況嚴重的設備為三類。如發現繼電保護有缺陷必須及時處理,嚴禁其存在隱患運行。對有缺陷經處理好的繼電保護裝置建立設備缺陷臺帳,有利于今后對其檢修工作。
5電力系統繼電保護發展趨勢
繼電保護技術向計算機化、網絡化、智能化、保護、控制、測量和數據通信一體化方向發展。隨著計算機硬件的飛速發展,電力系統對微機保護的要求也在不斷提高,除了保護的基本功能外,還應具有大容量故障信息和數據的長期存放空間,快速的數據處理功能,強大的通信能力,與其他保護、控制裝置和調度聯網以共享全系統數據、信息和網絡資源的能力,高級語言編程等,使微機保護裝置具備一臺PC的功能。為保證系統的安全運行,各個保護單元與重合裝置必須協調工作,因此,必須實現微機保護裝置的網絡化,這在當前的技術條件下是完全可行的。在實現繼電保護的計算機化和網絡化的條件下,保護裝置實際上是一臺高性能,為了測量、保護和控制的需要,室外變電站的所有設備,如變壓器、線路等的二次電壓、電流都必須用控制電纜引到主控室。所敷設的大量控制電纜投資大,且使得二次回路非常復雜。但是如果將上述的保護、控制、測量、數據通信一體化的計算機裝置,就地安裝在室外變電站的被保護設備旁,將被保護設備的電壓、電流量在此裝置內轉換成數字量后,通過計算機網絡送到主控室,則可免除大量的控制電纜。
結論。隨著電力系統的告訴發展和計算機通信技術的進步,繼電保護技術的發展向計算機化、網絡化、一體化、智能化方向發展,這對繼電保護工作者提出了新的挑戰。只有對繼電保護裝置進行定期檢查和維護,按時巡檢其運行狀況,及時發現故障并做好處理,保證系統無故障設備正常運行,提高供電可靠性。
參考文獻
1繼電保護發展現狀
電力系統的飛速發展對繼電保護不斷提出新的要求,電子技術、計算機技術與通信技術的飛速發展又為繼電保護技術的發展不斷地注入了新的活力,因此,繼電保護技術得天獨厚,在40余年的時間里完成了發展的4個歷史階段。
建國后,我國繼電保護學科、繼電保護設計、繼電器制造工業和繼電保護技術隊伍從無到有,在大約10年的時間里走過了先進國家半個世紀走過的道路。50年代,我國工程技術人員創造性地吸收、消化、掌握了國外先進的繼電保護設備性能和運行技術[1],建成了一支具有深厚繼電保護理論造詣和豐富運行經驗的繼電保護技術隊伍,對全國繼電保護技術隊伍的建立和成長起了指導作用。阿城繼電器廠引進消化了當時國外先進的繼電器制造技術,建立了我國自己的繼電器制造業。因而在60年代中我國已建成了繼電保護研究、設計、制造、運行和教學的完整體系。這是機電式繼電保護繁榮的時代,為我國繼電保護技術的發展奠定了堅實基礎。
自50年代末,晶體管繼電保護已在開始研究。60年代中到80年代中是晶體管繼電保護蓬勃發展和廣泛采用的時代。其中天津大學與南京電力自動化設備廠合作研究的500kV晶體管方向高頻保護和南京電力自動化研究院研制的晶體管高頻閉鎖距離保護,運行于葛洲壩500kV線路上[2],結束了500kV線路保護完全依靠從國外進口的時代。
在此期間,從70年代中,基于集成運算放大器的集成電路保護已開始研究。到80年代末集成電路保護已形成完整系列,逐漸取代晶體管保護。到90年代初集成電路保護的研制、生產、應用仍處于主導地位,這是集成電路保護時代。在這方面南京電力自動化研究院研制的集成電路工頻變化量方向高頻保護起了重要作用[3],天津大學與南京電力自動化設備廠合作研制的集成電路相電壓補償式方向高頻保護也在多條220kV和500kV線路上運行。
我國從70年代末即已開始了計算機繼電保護的研究[4],高等院校和科研院所起著先導的作用。華中理工大學、東南大學、華北電力學院、西安交通大學、天津大學、上海交通大學、重慶大學和南京電力自動化研究院都相繼研制了不同原理、不同型式的微機保護裝置。1984年原華北電力學院研制的輸電線路微機保護裝置首先通過鑒定,并在系統中獲得應用[5],揭開了我國繼電保護發展史上新的一頁,為微機保護的推廣開辟了道路。在主設備保護方面,東南大學和華中理工大學研制的發電機失磁保護、發電機保護和發電機?變壓器組保護也相繼于1989、1994年通過鑒定,投入運行。南京電力自動化研究院研制的微機線路保護裝置也于1991年通過鑒定。天津大學與南京電力自動化設備廠合作研制的微機相電壓補償式方向高頻保護,西安交通大學與許昌繼電器廠合作研制的正序故障分量方向高頻保護也相繼于1993、1996年通過鑒定。至此,不同原理、不同機型的微機線路和主設備保護各具特色,為電力系統提供了一批新一代性能優良、功能齊全、工作可靠的繼電保護裝置。隨著微機保護裝置的研究,在微機保護軟件、算法等方面也取得了很多理論成果。可以說從90年代開始我國繼電保護技術已進入了微機保護的時代。
2繼電保護的未來發展
繼電保護技術未來趨勢是向計算機化,網絡化,智能化,保護、控制、測量和數據通信一體化發展。
2.1計算機化
隨著計算機硬件的迅猛發展,微機保護硬件也在不斷發展。原華北電力學院研制的微機線路保護硬件已經歷了3個發展階段:從8位單CPU結構的微機保護問世,不到5年時間就發展到多CPU結構,后又發展到總線不出模塊的大模塊結構,性能大大提高,得到了廣泛應用。華中理工大學研制的微機保護也是從8位CPU,發展到以工控機核心部分為基礎的32位微機保護。
南京電力自動化研究院一開始就研制了16位CPU為基礎的微機線路保護,已得到大面積推廣,目前也在研究32位保護硬件系統。東南大學研制的微機主設備保護的硬件也經過了多次改進和提高。天津大學一開始即研制以16位多CPU為基礎的微機線路保護,1988年即開始研究以32位數字信號處理器(DSP)為基礎的保護、控制、測量一體化微機裝置,目前已與珠海晉電自動化設備公司合作研制成一種功能齊全的32位大模塊,一個模塊就是一個小型計算機。采用32位微機芯片并非只著眼于精度,因為精度受A/D轉換器分辨率的限制,超過16位時在轉換速度和成本方面都是難以接受的;更重要的是32位微機芯片具有很高的集成度,很高的工作頻率和計算速度,很大的尋址空間,豐富的指令系統和較多的輸入輸出口。CPU的寄存器、數據總線、地址總線都是32位的,具有存儲器管理功能、存儲器保護功能和任務轉換功能,并將高速緩存(Cache)和浮點數部件都集成在CPU內。
電力系統對微機保護的要求不斷提高,除了保護的基本功能外,還應具有大容量故障信息和數據的長期存放空間,快速的數據處理功能,強大的通信能力,與其它保護、控制裝置和調度聯網以共享全系統數據、信息和網絡資源的能力,高級語言編程等。這就要求微機保護裝置具有相當于一臺PC機的功能。在計算機保護發展初期,曾設想過用一臺小型計算機作成繼電保護裝置。由于當時小型機體積大、成本高、可靠性差,這個設想是不現實的。現在,同微機保護裝置大小相似的工控機的功能、速度、存儲容量大大超過了當年的小型機,因此,用成套工控機作成繼電保護的時機已經成熟,這將是微機保護的發展方向之一。天津大學已研制成用同微機保護裝置結構完全相同的一種工控機加以改造作成的繼電保護裝置。這種裝置的優點有:(1)具有486PC機的全部功能,能滿足對當前和未來微機保護的各種功能要求。(2)尺寸和結構與目前的微機保護裝置相似,工藝精良、防震、防過熱、防電磁干擾能力強,可運行于非常惡劣的工作環境,成本可接受。(3)采用STD總線或PC總線,硬件模塊化,對于不同的保護可任意選用不同模塊,配置靈活、容易擴展。
繼電保護裝置的微機化、計算機化是不可逆轉的發展趨勢。但對如何更好地滿足電力系統要求,如何進一步提高繼電保護的可靠性,如何取得更大的經濟效益和社會效益,尚須進行具體深入的研究。\
2.2網絡化
計算機網絡作為信息和數據通信工具已成為信息時代的技術支柱,使人類生產和社會生活的面貌發生了根本變化。它深刻影響著各個工業領域,也為各個工業領域提供了強有力的通信手段。到目前為止,除了差動保護和縱聯保護外,所有繼電保護裝置都只能反應保護安裝處的電氣量。繼電保護的作用也只限于切除故障元件,縮小事故影響范圍。這主要是由于缺乏強有力的數據通信手段。國外早已提出過系統保護的概念,這在當時主要指安全自動裝置。因繼電保護的作用不只限于切除故障元件和限制事故影響范圍(這是首要任務),還要保證全系統的安全穩定運行。這就要求每個保護單元都能共享全系統的運行和故障信息的數據,各個保護單元與重合閘裝置在分析這些信息和數據的基礎上協調動作,確保系統的安全穩定運行。顯然,實現這種系統保護的基本條件是將全系統各主要設備的保護裝置用計算機網絡聯接起來,亦即實現微機保護裝置的網絡化。這在當前的技術條件下是完全可能的。
對于一般的非系統保護,實現保護裝置的計算機聯網也有很大的好處。繼電保護裝置能夠得到的系統故障信息愈多,則對故障性質、故障位置的判斷和故障距離的檢測愈準確。對自適應保護原理的研究已經過很長的時間,也取得了一定的成果,但要真正實現保護對系統運行方式和故障狀態的自適應,必須獲得更多的系統運行和故障信息,只有實現保護的計算機網絡化,才能做到這一點。
對于某些保護裝置實現計算機聯網,也能提高保護的可靠性。天津大學1993年針對未來三峽水電站500kV超高壓多回路母線提出了一種分布式母線保護的原理[6],初步研制成功了這種裝置。其原理是將傳統的集中式母線保護分散成若干個(與被保護母線的回路數相同)母線保護單元,分散裝設在各回路保護屏上,各保護單元用計算機網絡聯接起來,每個保護單元只輸入本回路的電流量,將其轉換成數字量后,通過計算機網絡傳送給其它所有回路的保護單元,各保護單元根據本回路的電流量和從計算機網絡上獲得的其它所有回路的電流量,進行母線差動保護的計算,如果計算結果證明是母線內部故障則只跳開本回路斷路器,將故障的母線隔離。在母線區外故障時,各保護單元都計算為外部故障均不動作。這種用計算機網絡實現的分布式母線保護原理,比傳統的集中式母線保護原理有較高的可靠性。因為如果一個保護單元受到干擾或計算錯誤而誤動時,只能錯誤地跳開本回路,不會造成使母線整個被切除的惡性事故,這對于象三峽電站具有超高壓母線的系統樞紐非常重要。
由上述可知,微機保護裝置網絡化可大大提高保護性能和可靠性,這是微機保護發展的必然趨勢。
2.3保護、控制、測量、數據通信一體化
在實現繼電保護的計算機化和網絡化的條件下,保護裝置實際上就是一臺高性能、多功能的計算機,是整個電力系統計算機網絡上的一個智能終端。它可從網上獲取電力系統運行和故障的任何信息和數據,也可將它所獲得的被保護元件的任何信息和數據傳送給網絡控制中心或任一終端。因此,每個微機保護裝置不但可完成繼電保護功能,而且在無故障正常運行情況下還可完成測量、控制、數據通信功能,亦即實現保護、控制、測量、數據通信一體化。
目前,為了測量、保護和控制的需要,室外變電站的所有設備,如變壓器、線路等的二次電壓、電流都必須用控制電纜引到主控室。所敷設的大量控制電纜不但要大量投資,而且使二次回路非常復雜。但是如果將上述的保護、控制、測量、數據通信一體化的計算機裝置,就地安裝在室外變電站的被保護設備旁,將被保護設備的電壓、電流量在此裝置內轉換成數字量后,通過計算機網絡送到主控室,則可免除大量的控制電纜。如果用光纖作為網絡的傳輸介質,還可免除電磁干擾。現在光電流互感器(OTA)和光電壓互感器(OTV)已在研究試驗階段,將來必然在電力系統中得到應用。在采用OTA和OTV的情況下,保護裝置應放在距OTA和OTV最近的地方,亦即應放在被保護設備附近。OTA和OTV的光信號輸入到此一體化裝置中并轉換成電信號后,一方面用作保護的計算判斷;另一方面作為測量量,通過網絡送到主控室。從主控室通過網絡可將對被保護設備的操作控制命令送到此一體化裝置,由此一體化裝置執行斷路器的操作。1992年天津大學提出了保護、控制、測量、通信一體化問題,并研制了以TMS320C25數字信號處理器(DSP)為基礎的一個保護、控制、測量、數據通信一體化裝置。
2.4智能化
近年來,人工智能技術如神經網絡、遺傳算法、進化規劃、模糊邏輯等在電力系統各個領域都得到了應用,在繼電保護領域應用的研究也已開始[7]。神經網絡是一種非線性映射的方法,很多難以列出方程式或難以求解的復雜的非線性問題,應用神經網絡方法則可迎刃而解。例如在輸電線兩側系統電勢角度擺開情況下發生經過渡電阻的短路就是一非線性問題,距離保護很難正確作出故障位置的判別,從而造成誤動或拒動;如果用神經網絡方法,經過大量故障樣本的訓練,只要樣本集中充分考慮了各種情況,則在發生任何故障時都可正確判別。其它如遺傳算法、進化規劃等也都有其獨特的求解復雜問題的能力。將這些人工智能方法適當結合可使求解速度更快。天津大學從1996年起進行神經網絡式繼電保護的研究,已取得初步成果[8]。可以預見,人工智能技術在繼電保護領域必會得到應用,以解決用常規方法難以解決的問題。
3結束語
建國以來,我國電力系統繼電保護技術經歷了4個時代。隨著電力系統的高速發展和計算機技術、通信技術的進步,繼電保護技術面臨著進一步發展的趨勢。國內外繼電保護技術發展的趨勢為:計算機化,網絡化,保護、控制、測量、數據通信一體化和人工智能化,這對繼電保護工作者提出了艱巨的任務,也開辟了活動的廣闊天地。
作者單位:天津市電力學會(天津300072)
參考文獻
1王梅義.高壓電網繼電保護運行技術.北京:電力工業出版社,1981
2HeJiali,ZhangYuanhui,YangNianci.NewTypePowerLineCarrierRelayingSystemwithDirectionalComparisonforEHVTransmissionLines.IEEETransactionsPAS-103,1984(2)
3沈國榮.工頻變化量方向繼電器原理的研究.電力系統自動化,1983(1)
4葛耀中.數字計算機在繼電保護中的應用.繼電器,1978(3)
5楊奇遜.微型機繼電保護基礎.北京:水利電力出版社,1988
①繼電保護自動化技術在母線保護中的應用。母線繼電保護主要包括兩種,即相位對比保護以及差動保護。相位對比保護指的是通過相位的對比方式,提高系統保護母線的可靠性和有效性;差動保護是將特點以及變化都一致的電流互感器設置在母線元件上,當系統母線側邊端子和二次繞組進行連接之后,再將繼電保護裝置安裝在系統母線差動位置。在大電流接地過程中,通過三相連接的方式實現;小電流接地過程中,在相間短路中設置系統母線保護,然后通過兩相連接的方式實現。②繼電保護自動化技術在發動機保護中的應用。發電機是電力系統的重要組成部分,保證發動機的安全、穩定運行至關重要。繼電保護自動化技術在發電機保護中應用主要包括兩個方面:一方面,重點保護,如果發電機定子繞組匝間發生短路故障,將會導致發電機的故障部位溫度上升,破壞絕緣層,威脅發電機的安全運行,通過在定子繞組內安裝匝間保護裝置,能夠有效的防止定子匝間短路故障的發生;如果發電機的單相接地產生的電流超過規定值,通過安裝接地保護裝置能夠對發電機進行繼電保護;通過將發電機中性點、電流、相位進行相互結合,能夠形成縱聯差動保護,實現對發電機的保護;另一方面,備用保護,過電壓保護能夠有效的防止發電機自負荷較低的狀況下發生絕緣被擊穿的現象;過電保護能夠有效的實現對外部短路故障的保護,防止發生短路破壞發電機;當發電機定子繞組發生低負荷問題時,繼電保護裝置能夠自動切斷電源,并發出相應的報警信號,實現對發電機的保護。③繼電保護自動化技術在變壓器保護中的應用。變壓器是電力系統的重要組成部分之一,對電力系統的運行安全性和穩定性具有非常重要的作用。繼電保護自動化技術在變壓器保護中的應用主要包括以下幾個方面:其一,短路保護,變壓器短路保護包括阻抗繼電保護和過電流繼電保護,阻抗繼電保護主要是通過利用變壓器阻抗元件產生的保護作用,阻抗元件運行一段時間之后,會自動切斷電源,以此實現對變壓器的保護;過電流繼電保護主要是在變壓器電源兩邊電源和時間元件中安裝過電流繼電保護裝置,電流元件運行一段時間之后,會自動切斷電源,進而實現對變壓器的保護。其二,瓦斯保護,當變壓器的油箱出現問題時,在故障電弧的作用下絕緣材料和油都會發生分解,產生有害氣體,通過采用瓦斯保護,當油箱出現上述故障時,能夠自動的啟動保護動作,將變壓器電源切斷,同時發出警報信號通知維護人員趕到故障地點進行處理。其三,接地保護,對于不接地變壓器保護,應該采取零序電壓保護措施;對于直接接地變壓器保護,應該采取零序電流保護。④繼電保護自動化技術在線路接地保護中的應用。電力系統的線路錯綜復雜,接地方式也相對較多,因此電力系統的接地方式包括大電流型接地與小電流型接地,當出現大電流接地時,應該立刻切斷電源,防止接地故障對電力系統造成的破壞;當發生小電流型接地時,繼電保護裝置會發出報警信號,電力系統在一定時間內依然可以運行。針對不同的接地故障,應該根據故障狀況采取相應的保護措施,具體狀況如下所示:其一,零序功率,當電力系統發生接地故障時,零序功率的方向發生變化,零序電流波動相對較小,以此實現對電力接地故障的預測以及保護;其二,零序電流,當電力系統線路發生接地故障時,零序電流會迅速上升,繼電保護動作非常敏感,能夠及時的采取切斷電源的保護措施,對電力系統進行保護;其三,零序電壓,電力系統在正常運行時,并不會產生零序電壓,如果電力系統發生接地故障,會導致零序電壓的產生,繼電保護裝置能夠及時的發出相應的報警信號,同時電網維護人員通過觀察電壓表數值能夠判斷系統是否發生接地故障,主要是因為當電力系統發生接地故障時,電壓數值會降低。
1.2實例分析
文章以某電網為例,該電網于2010年應用了繼電保護自動化技術,2011年4月23日,110kV變壓器主變低壓側繼電保護動作,1號主變101開關跳閘,2號主變119、131開關過流保護動作跳閘,重合閘動作,合成功,電網維護人員趕到事故現場,設備并無異常,維護人員通過查看跳閘過的線路,兩條線路故障都能夠合閘成功,但是卻導致越級跳閘。通過對故障進行分析,發現為線路故障,開關拒動,處理方法表現為:把故障開關隔離,恢復供電,然后通知檢修人員認真檢查,查實狀況后采取措施進行檢修。
2繼電保護自動化技術的未來發展趨勢
繼電保護自動化技術的未來發展趨勢主要包括以下幾個方面:其一,智能化,近年來,人工智能技術在電力系統繼電保護自動化中得到非常廣泛的應用,例如模糊邏輯算法、遺傳算法、神經網絡等,通過將這些人工智能技術應用在繼電保護自動化系統中,能夠保證繼電保護自動化系統正確判別故障,并具有智能化解決復雜問題的能力,進而實現繼電保護的智能化;其二,網絡化,計算機網絡技術在國家經濟建設以及能源發展中發揮了至關重要的作用,通過將網絡化技術應用在電力繼電保護系統中,利用計算機網絡能夠將主要設備的繼電保護裝置連接在一起,創建繼電保護裝置網絡,能夠顯著的提高繼電保護的可靠性,因此電力系統繼電保護技術的網絡化是未來發展的一種必然趨勢;其三,計算機化,隨著計算機技術的快速發展,自動化芯片控制的電路保護硬件已經從16位單CPU結構發展為32位CPU微機保護結構,顯著的提高了繼電保護的性能以及響應速度,繼電保護自動化系統的計算機化已經成為不可逆轉的發展趨勢。
1.電力系統電壓等級與變電站種類
電力系統電壓等級有220/380V(0.4kV),3kV、6kV、10kV、20kV、35kV、66kV、110kV、220kV、330kV、500kV。隨著電機制造工藝的提高,10kV電動機已批量生產,所以3kV、6kV已較少使用,20kV、66kV也很少使用。供電系統以10kV、35kV為主。輸配電系統以110kV以上為主。發電廠發電機有6kV與10kV兩種,現在以10kV為主,用戶均為220/380V(0.4kV)低壓系統。
根據《城市電力網規定設計規則》規定:輸電網為500kV、330kV、220kV、110kV,高壓配電網為110kV、66kV,中壓配電網為20kV、10kV、6kV,低壓配電網為0.4kV(220V/380V)。
發電廠發出6kV或10kV電,除發電廠自己用(廠用電)之外,也可以用10kV電壓送給發電廠附近用戶,10kV供電范圍為10Km、35kV為20~50Km、66kV為30~100Km、110kV為50~150Km、220kV為100~300Km、330kV為200~600Km、500kV為150~850Km。
2.變配電站種類
電力系統各種電壓等級均通過電力變壓器來轉換,電壓升高為升壓變壓器(變電站為升壓站),電壓降低為降壓變壓器(變電站為降壓站)。一種電壓變為另一種電壓的選用兩個線圈(繞組)的雙圈變壓器,一種電壓變為兩種電壓的選用三個線圈(繞組)的三圈變壓器。
變電站除升壓與降壓之分外,還以規模大小分為樞紐站,區域站與終端站。樞紐站電壓等級一般為三個(三圈變壓器),550kV/220kV/110kV。區域站一般也有三個電壓等級(三圈變壓器),220kV/110kV/35kV或110kV/35kV/10kV。終端站一般直接接到用戶,大多數為兩個電壓等級(兩圈變壓器)110kV/10kV或35kV/10kV。用戶本身的變電站一般只有兩個電壓等級(雙圈變壓器)110kV/10kV、35kV/0.4kV、10kV/0.4kV,其中以10kV/0.4kV為最多。
3.變電站一次回路接線方案
1)一次接線種類
變電站一次回路接線是指輸電線路進入變電站之后,所有電力設備(變壓器及進出線開關等)的相互連接方式。其接線方案有:線路變壓器組,橋形接線,單母線,單母線分段,雙母線,雙母線分段,環網供電等。
2)線路變壓器組
變電站只有一路進線與一臺變壓器,而且再無發展的情況下采用線路變壓器組接線。
3)橋形接線
有兩路進線、兩臺變壓器,而且再沒有發展的情況下,采用橋形接線。針對變壓器,聯絡斷路器在兩個進線斷路器之內為內橋接線,聯絡斷路器在兩個進線斷路器之外為外橋接線。
4)單母線
變電站進出線較多時,采用單母線,有兩路進線時,一般一路供電、一路備用(不同時供電),二者可設備用電源互自投,多路出線均由一段母線引出。
5)單母線分段
有兩路以上進線,多路出線時,選用單母線分段,兩路進線分別接到兩段母線上,兩段母線用母聯開關連接起來。出線分別接到兩段母線上。
單母線分段運行方式比較多。一般為一路主供,一路備用(不合閘),母聯合上,當主供斷電時,備用合上,主供、備用與母聯互鎖。備用電源容量較小時,備用電源合上后,要斷開一些出線。這是比較常用的一種運行方式。
對于特別重要的負荷,兩路進線均為主供,母聯開關斷開,當一路進線斷電時,母聯合上,來電后斷開母聯再合上進線開關。
單母線分段也有利于變電站內部檢修,檢修時可以停掉一段母線,如果是單母線不分段,檢修時就要全站停電,利用旁路母線可以不停電,旁路母線只用于電力系統變電站。
6)雙母線
雙母線主要用于發電廠及大型變電站,每路線路都由一個斷路器經過兩個隔離開關分別接到兩條母線上,這樣在母線檢修時,就可以利用隔離開關將線路倒在一條件母線上。雙母線也有分段與不分段兩種,雙母線分段再加旁路斷路器,接線方式復雜,但檢修就非常方便了,停電范圍可減少。
4.變配電站二次回路
1)二次回路種類
變配電站二次回路包括:測量、保護、控制與信號回路部分。測量回路包括:計量測量與保護測量。控制回路包括:就地手動合分閘、防跳聯鎖、試驗、互投聯鎖、保護跳閘以及合分閘執行部分。信號回路包括開關運行狀態信號、事故跳閘信號與事故預告信號。
2)測量回路
測量回路分為電流回路與電壓回路。電流回路各種設備串聯于電流互感器二次側(5A),電流互感器是將原邊負荷電流統一變為5A測量電流。計量與保護分別用各自的互感器(計量用互感器精度要求高),計量測量串接于電流表以及電度表,功率表與功率因數表電流端子。保護測量串接于保護繼電器的電流端子。微機保護一般將計量及保護集中于一體,分別有計量電流端子與保護電流端子。
電壓測量回路,220/380V低壓系統直接接220V或380V,3KV以上高壓系統全部經過電壓互感器將各種等級的高電壓變為統一的100V電壓,電壓表以及電度表、功率表與功率因數表的電壓線圈經其端子并接在100V電壓母線上。微機保護單元計量電壓與保護電壓統一為一種電壓端子。
3)控制回路
(1)合分閘回路
合分閘通過合分閘轉換開關進行操作,常規保護為提示操作人員及事故跳閘報警需要,轉換開關選用預合-合閘-合后及預分-分閘-分后的多檔轉換開關。以使利用不對應接線進行合分閘提示與事故跳閘報警,國家已有標準圖設計。采用微機保護以后,要進行遠分合閘操作后,還要到就地進行轉換開關對位操作,這就失去了遠分操作的意義,所以應取消不對應接線,選用中間自復位的只有合閘與分閘的三檔轉換開關。
(2)防跳回路
當合閘回路出現故障時進行分閘,或短路事故未排除,又進行合閘(誤操作),這時就會出現斷路器反復合分閘,不僅容易引起或擴大事故,還會引起設備損壞或人身事故,所以高壓開關控制回路應設計防跳。防跳一般選用電流啟動,電壓保持的雙線圈繼電器。電流線圈串接于分閘回路作為啟動線圈。電壓線圈接于合閘回路,作為保持線圈,當分閘時,電流線圈經分閘回路起動。如果合閘回路有故障,或處于手動合閘位置,電壓線圈起啟動并通過其常開接點自保持,其常閉接點馬上斷開合閘回路,保證斷路器在分閘過程中不能馬上再合閘。防跳繼電器的電流回路還可以通過其常開接點將電流線圈自保持,這樣可以減輕保護繼電器的出口接點斷開負荷,也減少了保護繼電器的保持時間要求。
有些微機保護裝置自己已具有防跳功能,這樣就可以不再設計防跳回路。斷路器操作機構選用彈簧儲能時,如果選用儲能后可以進行一次合閘與分閘的彈簧儲能操作機構(也有用于重合閘的儲能后可以進行二次合閘與分閘的彈簧儲能操作機構),因為儲能一般都要求10秒左右,當儲能開關經常處于斷開位置時,儲一次能,合完之后,將儲能開關再處于斷開位置,可以跳一次閘;跳閘之后,要手動儲能之后才能進行合閘,此時,也可以不再設計防跳回路。
(3)試驗與互投聯鎖與控制
對于手車開關柜,手車推出后要進行斷路器合分閘試驗,應設計合分閘試驗按鈕。進線與母聯斷路,一般應根據要求進行互投聯鎖或控制。
(4)保護跳閘
保護跳閘出口經過連接片接于跳閘回路,連接片用于保護調試,或運行過程中解除某些保護功能。
(5)合分閘回路
合分閘回路為經合分閘母線為操作機構提供電源,以及其控制回路,一般都應單獨畫出。
4)信號回路
(1)開關運行狀態信號由合閘與分閘指示兩個裝于開關柜上的信號燈組成:經過操作轉換開關不對應接線后接到正電源上。采用微機保護后,轉換開關取消了不對應接線,所以信號燈正極可以直接接到正電源上。
(2)事故信號有事故跳閘與事故預告兩種信號,事故跳閘報警也要通過轉化開關不對應后,接到事故跳閘信號母線上,再引到中央信號系統。事故預告信號通過信號繼電器接點引到中央信號系統。采用微機保護后,將斷路器操作機構輔助接點與信號繼電器的接點分別接到微機保護單元的開關量輸入端子,需要有中央信號系統時,如果微機保護單元可以提供事故跳閘與事故預告輸出接點,可將其引到中央信號系統。否則,應利用信號繼電器的另一對接點引到中央信號系統。
(3)中央信號系統為安裝于值班室內的集中報警系統,由事故跳閘與事故預告兩套聲光報警組成,光報警用光字牌,不用信號燈,光字牌分集中與分散兩種。采用變電站綜合自動化系統后,可以不再設計中央信號系統,或將其簡化,只設計集中報警作為計算機報警的后備報警。
5.變配電站繼電保護
1)變配電站繼電保護的作用
變配電站繼電保護能夠在變配電站運行過程中發生故障(三相短路、兩相短路、單相接地等)和出現不正常現象時(過負荷、過電壓、低電壓、低周波、瓦斯、超溫、控制與測量回路斷線等),迅速有選擇性發出跳閘命令將故障切除或發出報警,從而減少故障造成的停電范圍和電氣設備的損壞程度,保證電力系統穩定運行。
2)變配電站繼電保護的基本工作原理
變配電站繼電保護是根據變配電站運行過程中發生故障時出現的電流增加、電壓升高或降低、頻率降低、出現瓦斯、溫度升高等現象超過繼電保護的整定值(給定值)或超限值后,在整定時間內,有選擇的發出跳閘命令或報警信號。
根據電流值來進行選擇性跳閘的為反時限,電流值越大,跳閘越快。根據時間來進行選擇性跳閘的稱為定時限保護,定時限在故障電流超過整定值后,經過時間定值給定的時間后才出現跳閘命令。瓦斯與溫度等為非電量保護。
可靠系數為一個經驗數據,計算繼電器保護動作值時,要將計算結果再乘以可靠系數,以保證繼電保護動作的準確與可靠,其范圍為1.3~1.5。
發生故障時的最小值與保護的動作值之比為繼電保護的靈敏系數,一般為1.2~2,應根據設計規范要進行選擇。
3)變配電站繼電保護按保護性質分類
(1)電流速斷保護:故障電流超過保護整定值無時限(整定時間為零),立即發出跳閘命令。
(2)電流延時速斷保護:故障電流超過速斷保護整定值時,帶一定延時后發出跳閘命令。
(3)過電流保護:故障電流超過過流保護整定值,故障出現時間超過保護整定時間后發出跳閘命令。
(4)過電壓保護:故障電壓超過保護整定值時,發出跳閘命令或過電壓信號。
(5)低電壓保護:故障電壓低于保護整定值時,發出跳閘命令或低電壓信號。
(6)低周波減載:當電網頻率低于整定值時,有選擇性跳開規定好的不重要負荷。
(7)單相接地保護:當一相發生接地后對于接地系統,發出跳閘命令,對于中性點不接地系統,發出接地報警信號。
(8)差動保護:當流過變壓器、中性點線路或電動機繞組,線路兩端電流之差變化超過整定值時,發出跳閘命令稱為縱差動保護,兩條并列運行的線路或兩個繞組之間電流差變化超過整定值時,發出跳閘命令稱橫差動保護。
(9)距離保護:根據故障點到保護安裝處的距離(阻抗)發出跳閘命令稱為距離保護。
(10)方向保護:根據故障電流的方向,有選擇性的發出跳閘命令稱為方向保護。
(11)高頻保護:利用弱電高頻信號傳遞故障信號來進行選擇性跳閘的保護稱為高頻保護。
(12)過負荷:運行電流超過過負荷整定值(一般按最大負荷或設備額定功率來整定)時,發出過負荷信號。
(13)瓦斯保護:對于油浸變壓器,當變壓器內部發生匝間短路出現電氣火花,變壓器油被擊穿出現瓦斯氣體沖擊安裝在油枕通道管中的瓦斯繼電器,故障嚴重,瓦斯氣體多,沖擊力大,重瓦斯動作于跳閘,故障不嚴重,瓦斯氣體少,沖擊力小,輕瓦斯動作于信號。
(14)溫度保護:變壓器、電動機或發電機過負荷或內部短路故障,出現設備本體溫度升高,超過整定值發出跳閘命令或超溫報警信號。
(15)主保護:滿足電力系統穩定和設備安全要求,出現故障后能以最快速度有選擇性的切除被保護設備或線路的保護。
(16)后備保護:主保護或斷路器拒動時,用來切除除故障的保護。主保護拒動,本電力系統或線路的另一套保護發出跳閘命令的為近后備保護。當主保護或斷路器拒動由相鄰(上一級)電力設備或線路的保護來切除故障的后備保護為遠后備保護。
(17)輔助保護:為補充主保護和后備保護的性能,或當主保護和后備保護檢修退出時而增加的簡單保護。
(18)互感器二次線路斷線報警:電流互感器或電壓互感器二次側斷線會引起保護誤動作,所以在其發生斷線后應發出斷線信號。
(19)跳閘回路斷線:斷路器跳閘回路斷線后,繼電保護發出跳閘命令斷路器也不能跳開,所以跳閘回路斷線時應發出報警信號。
(20)自動重合閘:對于一些瞬時性故障(雷擊、架空線閃路等)故障迅速切除后,不會發生永久性故障,此時再進行合閘,可以繼續保證供電。繼電保護發出跳閘命令斷路器跳開后馬上再發出合閘命令,稱為重合閘。
重合閘一次后不允許再重合的稱為一次重合閘,允許再重合一次的稱為二次重合閘(一般很少使用)。有了重合閘功能之后,在發生故障后,繼電保護先不考慮保護整定時間,馬上進行跳閘,跳閘后,再進行重合閘,重合后故障不能切除,然后再根據繼電保護整定時間進行跳閘,此種重合閘為前加速重合閘。
發生事故后繼電保護先根據保護整定時間進行保護跳閘,然后進行重合閘,重合閘不成功無延時迅速發出跳閘命令,此種重合閘稱為后加速重合閘。
(21)備用電源互投:兩路或多路電源進線供電時,當一路斷電,其供電負荷可由其它電源供電,也就是要進行電源切換,人工進行切換的稱為手動互投。自動進行切換的稱為自動互投。互投有利用母聯斷路器進行互投的(用于多路電源進行同時運行)和進線電源互投(一路電源為主供,其它路電源為熱備用)等多種形式。對于不允供電電源并列運行的還應加互投閉鎖。
(22)同期并列與解列:對于多電源供電的變電站或發電廠要聯網或上網時必須滿足同期并列條件后才能并網或上網,并網或上網有手動與自動兩種。
4)變電站繼電保護按被保護對象分類
(1)發電機保護
發電機保護有定子繞組相間短路,定子繞組接地,定子繞組匝間短路,發電機外部短路,對稱過負荷,定子繞組過電壓,勵磁回路一點及兩點接地,失磁故障等。出口方式為停機,解列,縮小故障影響范圍和發出信號。
(2)電力變壓器保護
電力變壓器保護有繞組及其引出線相間短路,中性點直接接地側單相短路,繞組匝間短路,外部短路引起的過電流,中性點直接接地電力網中外部接地短路引起的過電流及中性點過電壓、過負荷,油面降低,變壓器溫度升高,油箱壓力升高或冷卻系統故障。
(3)線路保護
線路保護根據電壓等級不同,電網中性點接地方式不同,輸電線路以及電纜或架空線長度不同,分別有:相間短路、單相接地短路、單相接地、過負荷等。
(4)母線保護
發電廠和重要變電所的母線應裝設專用母線保護。
(5)電力電容器保護
電力電容器有電容器內部故障及其引出線短路,電容器組和斷路器之間連接線短路,電容器組中某一故障電容切除后引起的過電壓、電容器組過電壓,所連接的母線失壓。
(6)高壓電動機保護
高壓電動機有定子繞組相間短路、定子繞組單相接地、定子繞組過負荷、定子繞組低電壓、同步電動機失步、同步電動機失磁、同步電動機出現非同步沖擊電流。
6.微機保護裝置
1)微機保護的優點
(1)可靠性高:一種微機保護單元可以完成多種保護與監測功能。代替了多種保護繼電器和測量儀表,簡化了開關柜與控制屏的接線,從而減少了相關設備的故障環節,提高了可靠性。微機保護單元采用高集成度的芯片,軟件有自動檢測與自動糾錯功能,也有提高了保護的可靠性。
(2)精度高,速度快,功能多。測量部分數字化大大提高其精度。CPU速度提高可以使各種事件以ms來計時,軟件功能的提高可以通過各種復雜的算法完成多種保護功能。
(3)靈活性大,通過軟件可以很方便的改變保護與控制特性,利用邏輯判斷實現各種互鎖,一種類型硬件利用不同軟件,可構成不同類型的保護。
(4)維護調試方便,硬件種類少,線路統一,外部接線簡單,大大減少了維護工作量,保護調試與整定利用輸入按鍵或上方計算機下傳來進行,調試簡單方便。
(5)經濟性好,性能價格比高,由于微機保護的多功能性,使變配電站測量、控制與保護部分的綜合造價降低。高可靠性與高速度,可以減少停電時間,節省人力,提高了經濟效益。
2)微機保護裝置的特點
微機保護裝置除了具有上述微機保護的優點之外,與同類產品比較具有以下特點:
(1)品種齊全:微機保護裝置,品種特別齊全,可以滿足各種類型變配電站的各種設備的各種保護要求,這就給變配電站設計及計算機聯網提供了很大方便。
(2)硬件采用最新的芯片提高了技術上的先進性,CPU采用80C196KB,測量為14位A/D轉換,模擬量輸入回路多達24路,采到的數據用DSP信號處理芯片進行處理,利用高速傅氏變換,得到基波到8次的諧波,特殊的軟件自動校正,確保了測量的高精度。利用雙口RAM與CPU變換數據,就構成一個多CPU系統,通信采用CAN總線。具有通信速率高(可達100MHZ,一般運行在80或60MHZ)抗干擾能力強等特點。通過鍵盤與液晶顯示單元可以方便的進行現場觀察與各種保護方式與保護參數的設定。
(3)硬件設計在供電電源,模擬量輸入,開關量輸入與輸出,通信接口等采用了特殊的隔離與抗干擾措施,抗干擾能力強,除集中組屏外,可以直接安裝于開關柜上。
(4)軟件功能豐富,除完成各種測量與保護功能外,通過與上位處理計算機配合,可以完成故障錄波(1秒高速故障記錄與9秒故障動態記錄),諧波分析與小電流接地選線等功能。
(5)可選用RS232和CAN通信方式,支持多種遠動傳輸規約,方便與各種計算機管理系統聯網。
(6)采用寬溫帶背景240×128大屏幕LCD液晶顯示器,操作方便、顯示美觀。
(7)集成度高、體積小、重量輕,便于集中組屏安裝和分散安裝于開關柜上。
3)微機保護裝置的使用范圍
(1)中小型發電廠及其升壓變電站。
(2)110kV/35kV/10kV區域變電站。
(3)城市10kV電網10kV開閉所
(4)用戶110kV/10kV或35kV/10kV總降壓站。
(5)用戶10kV變配電站
4)微機保護裝置的種類
(1)微機保護裝置共有四大類。
(2)線路保護裝置
微機線路保護裝置微機電容保護裝置微機方向線路保護裝置
微機零序距離線路保護裝置微機橫差電流方向線路保護裝置
(3)主設備保護裝置
微機雙繞組變壓器差動保護裝置微機三繞組變壓器差動保護裝置
微機變壓器后備保護裝置微機發電機差動保護裝置微機發電機后備保護裝置
微機發電機后備保護裝置微機電動機差動保護裝置微機電動機保護裝置
微機廠(站)用變保護裝置
(4)測控裝置
微機遙測遙控裝置微機遙信遙控裝置微機遙調裝置微機自動準同期裝置
微機備自投裝置微機PT切換裝置微機脈沖電度測量裝置
微機多功能變送測量裝置微機解列裝置
(5)管理裝置單元
通信單元管理單元雙機管理單元
5)微機保護裝置功能
微機保護裝置的通用技術要求和指標(工作環境、電源、技術參數、裝置結構)以及主要功能(保護性能指標、主要保護功能、保護原理、定值與參數設定,以及外部接線端子與二次圖)詳見相關產品說明書。
7.220/380V低壓配電系統微機監控系統
1)220/380V低壓配電系統特點
(1)應用范圍廣,現在工業與民用用電除礦井、醫療、危險品庫等外,均為220/380V,所以應用范圍非常廣泛。
(2)低壓配電系統一般均為TN—S,或TN—C—S系統。TN—C系統為三個相線(A、B、C)與一個中性線(N),N線在變壓器中性點接地或在建筑物進戶處重復接地。輸電線為四根線,電纜為四芯,沒有保護地線(PE),少一根線。設備外殼,金屬導電部分保護接地接在中性線(N)上,稱為接零系統,接零系統安全性較差,對電子設備干擾大,設計規范已規定不再采用。
TN—S系統為三個相線,一個中性線(N)與一個保護地線(PE)。N線與PE線在變壓器中性點集中接地或在建筑物進戶線處重復接地。輸電線為五根,電纜為五芯。中性線(N)與保護地線(PE)在接地點處連接在一起后,再不能有任何連接,因此中性線(N)也必須用絕緣線。中性線(N)引出后如果不用絕緣對地絕緣,或引出后又與保護地線有連接,雖然用了五根線,也為TN—C系統,這一點應特別引起注意。TN—S或TN—C—S系統安全性好,對電子設備干擾小,可以共用接地線(CPE),,采用等電位連接后安全性更好,干擾更小。所以設計規范規定除特殊場所外,均采用TN—S或TN—C—S系統。
(3)220/380V低壓配電系統的保護現在仍采用低壓斷路器或熔斷器。所以220/380V只有監控沒有保護。監控包括電流、電壓、電度、頻率、功率、功率因數、溫度等測量(遙測),開關運行狀態,事故跳閘,報警與事故預告(過負荷、超溫等)報警(遙信)與電動開關遠方合分閘操作(遙控)等三個內容(簡稱三遙),而沒有保護。
(4)220/380V低壓配電系統一次回路一般均為單母線或單母線分段,兩臺以上變壓器均為單母線分段,有幾臺變壓器就分幾段,這是因為用戶變電站變壓器一般不采用并列運行,這是為了減小短路電流,降低短路容量,否則,低壓斷路器的斷開容量就要加大。
(5)220/380V低壓配電系統進線、母聯、大負荷出線與低壓聯絡線因容量較大,一般一路(1個斷路器)占用一個低壓柜。根據供電負荷電流大小不同,一個低壓開關柜內有兩路出線(安裝兩個斷路器),四路出線(安裝四個斷路器),以及五、六、八與十路出線,不象高壓配電系統一個斷路器占用一個開關柜。因此低壓監控單元就要有用于一路、兩路或多路之分,設計時要根據每個低壓開關的出線回路數與低壓監控單元的規格來進行設計。
(6)低壓斷路器除手動操作外,還可以選用電動操作。大容量低壓斷路器一般均有手動與電動操作,設計時應選用帶遙控的低壓監控單元,小容量低壓斷路器,設計時,大多數都選用只有手動操作的斷路器,這樣低壓監控單元的遙控出口就可以不接線,或選用不帶遙控的低壓監控單元。
2)220/380V低壓配電系統微機監控系統的設計
(1)220/380V低壓配電系統微機監控系統首先根據一次系統及用戶要求進行遙測、遙信及遙控設計。
(2)測量回路設計
A測量部分的二次接線與高壓一樣,電流回路串聯于電壓互感器二次回路,電壓回路并聯于電壓測量回路。由于220/380V低壓配電系統沒有電壓互感器,電壓測量可以直接接到220/380V母線上,和電度表電壓回路一樣一般可以不加熔斷器保護,但柜內接線應盡量短,有條件時最好加熔斷器保護,以便于檢修。
B電度測量可選用自帶電源有脈沖輸出的脈沖電度表,對于有計算功率與電度功能的低壓監控單元,只作為內部計費時,可以不再選用脈沖電度表。
C選用有顯示功能的低壓監控單元,可以不再設計電流、電壓表,選用不帶顯示功能的低壓監控單元時還應設計電流或電壓表,不應兩種都設計。
(3)信號回路設計
設計時,低壓斷路器要增加一對常開接點接到低壓監控單元開關狀態輸入端子上。有事故跳閘報警輸出接點的,再將其接到低壓監控單元事故預告端子上。
(4)遙控回路設計
低壓監控系統的遙控設計比較簡單,電動操作的低壓斷路器都有一對合分閘按鈕,只要將低壓監控單元合分閘輸出端子分別并在合分閘按鈕上即可,必要時,可設計一個就地與遙控操作轉換開關,防止就地檢修開關時,遙控操作引起事故。
(5)供電電源與通信電纜設計
低壓監控單元電源為交流220V供電,耗電量一般只有幾瓦,設計時將其電源由端子上引到一個220V/5A兩極低壓斷路器上,再引到開關柜端子上,然后統一用KVV—3×1.0電纜集中引到低壓柜一路小容量出線上。需要時可加一個UPS電源。
通信電纜一般距離不超過200米可選用KVV—3×1.0普通屏蔽控制電纜,超過200米時應選用屏蔽雙絞線(最好選帶護套型)或計算機用通信電纜。
8.變配電站綜合自動化系統
1)系統組成
高壓采用微機保護,低壓采用監控單元,再用通信電纜將其與計算機聯網之后就可以組成一個現代化變配電站管理系統——變配電站綜合自動化系統。
2)變配電站綜合自動化系統設計內容
A高壓微機保護單元(組屏或安裝在開關柜上)選型及二次圖設計。
B低壓微機監控單元(安裝在開關柜上)選型及二次圖設計。
C管理計算機(放在值班室,無人值班時可放在動力調度室)選型。
D模擬盤(放在值班室或調度室)設計。
E上位機(與工廠計算機或電力部門調度聯網)聯網方案設計。
F通信電纜設計(包括管理計算機與上位機)。
3)管理計算機
管理計算機可根據系統要求進行配置。
4)模擬盤
用戶要求有模擬盤時,可以設計模擬盤,小系統可以用掛墻式,大系統用落地式,模擬盤尺寸根據供電系統一次圖及值班室面積來決定。模擬盤采用專用控制單元,將其通信電纜引到管理計算機處。模擬盤還需要一路交流220V電源,容量只有幾十瓦,設計時應與管理計算機電源一起考慮。
1110KV變電所10KV開關柜合
1.1基本情況
我局110KV變電所原有主變一臺,容量為2萬千伏安。35KV三回出線,10KV八回出線。其中10KV配電系統采用的開關型號為SN10-10II型少油斷路器,配CD10型直流電磁操動機構。10KV線路配置了電流速斷保護和過電流保護,10KV10#開關對城關大部分地區的負荷供電。
1.2現象
10KV10#開關,自89年投運后,運行情況較好。隨著城關地區的負荷迅速上升,配變的容量不斷增大。至九四年初,該開關出現拒合現象,即該開關在合閘時,發出連續的跳合聲響,而后開關有時能合上,有時不能合上。運行人員開出“開關跳躍”的缺陷通知單,局領導要求生技部門組織人員進行消缺。
1.3原因分析
該該臺開關出現的現象,對其定性分析如下:根據缺陷通知單的內容“開關跳躍”,對10KV10#開關的控制和保護回路進行了測試和檢查,排除了“開關跳躍”的可能。若開關存在跳躍,首選線路存在永久性相間短路故障,再則控制開關的接點焊死或控制開關在合閘位置卡死,不能復位。這兩個條件都滿足的情況下“開關跳躍”才會出現。我們通過分析,這兩個條件都不具備,幫排除“開關跳躍”的可能性。再次對該開關進行試驗和檢查,沒有發現異常,繼電保護人員再次對開關的控制和保護回路進行檢查,也沒有發現問題。但該開關在恢復運行時,拒合現象仍然存在。
通過仔細分析現場情況,發現該故障可能與保護裝置動作有關。因為在開關拒合時,發現過流信號掉牌,但運行人員認為掉牌是因為開關柜(GG-1A)振動較大引起的(以前發現過類似現象)。為此,繼保人員重新檢查控制和保護回路,終于發現了10#開關的過流保護沒有時限。過電流保護時間繼電器的延時閉合常開接點沒有接入回路,而把瞬動常開接點接入了回路。正、誤電路如下圖1、2所示。
把時間繼電器接點改接后,開關恢復運行,一切正常,拒合現象消失。
開關雖然恢復了運行,但造成開關拒合的原因是什么呢?我們分析認為應該是開關合閘時的沖擊電流。在該臺開關剛投入運行時,雖然過電流保護回路接線錯誤,但由于該線路較短、負荷較小,合閘時的沖擊電流啟動不了過電流保護裝置。但當城關地區的負荷不斷增加,配變容量不斷增大,開關合閘時的沖擊電流也隨之增大,當該電流增至能啟動過流保護裝置時,開關在合閘時保護動作,將開關跳開,出現開關拒合。但隨著運行方式的改變,使合閘沖擊電流減小,開關又能合上閘。當我們把回路改接后,定值雖然不能完全躲過合閘時的沖擊電流,但從時限上,保護裝置完全可以躲過該沖擊電流。
1.4吸取的教訓
10KV10#開關的拒合現象,幾經努力,終于得到解決,同時也從中得到深刻的教訓。
1.4.1運行人員素質需進一步提高,加強對問題的分析判斷能力,要做到匯報準確。
1.4.2安裝驗收把關要嚴。
1.4.3繼保人員在對裝置作整組試驗時方法不當,數次試驗都沒有發現異常,工作不到位。
2城關110KV變電所主變差動保護誤動
2.1基本情況
城關110KV變電所是岳西縣的樞紐變電所。一期工程上20000KVA主變一臺,電壓等級為110KV/35KV/10KV,35KV側為單母線接線方式。10KV側為單母線分段帶旁路接線方式。為滿足負荷增長的需要,于99年第四季度上二期工程,增加一臺主變,其容易為10000KVA。主變保護采用南京自動化設備總廠生產的CST231型微機保護,35KV側單獨供一條線路運行。
2.2事故現象及原因分析
二期工程竣工后,于2000年5月29日投入主變試運行。合上主變110KV側開關,主變空載運行二十四小時無任何異常現象,再投入35KV側開關帶線路運行時,主變差動保護運作。微機打印的事故報告顯示,B相差動保護出口,動作值0.81,大于整定值0.8。
根據運行記錄,主變差動保護動作時,其保護范圍內未出現任何異常,經初步分析為CT極性接錯。經檢查證實極性接反,改正后再次投入主變110KV側,35KV側開關試運行(10KV側不投)。當35KV側所帶負荷增加到約620KW時,差動保護發出差流越限告警信號。該信號是延時5秒發出,表明回路存在較大不平衡電流,其值已大于0.2A的告警整定值,怎么會出現如此大的不平衡電流?在差動保護范圍內進行仔細測量和檢查,均未發現任何問題。因此,對不平衡電流進行計算,如圖3所示:
一、概述
隨著微機繼電保護裝置的廣泛應用和變電站綜合自動化水平的不斷提高,各種智能設備采集的模擬量、開關量、一次設備狀態量大大增加,運行人員可以從中獲取更多的一、二次設備的實時信息。但是,由于目前的微機型二次設備考慮較多的是對以往設備功能的替代,導致這些設備基本上是獨立運行,致使它們采集的大量信息白白流失,未能得到充分利用。
電網是一個不可分割的整體,對整個電網的一、二次設備信息進行綜合利用,對保證電網安全穩定運行具有重大的意義。近幾年,計算機和網絡技術的飛速發展,使綜合利用整個電網的一、二次設備信息成為可能。電網繼電保護綜合自動化系統就是綜合利用整個電網智能設備所采集的信息,自動對信息進行計算分析,并調整繼電保護的工作狀態,以確保電網運行安全可靠的自動化系統,它可以實現以下主要功能。
1.實現繼電保護裝置對系統運行狀態的自適應。
2.實現對各種復雜故障的準確故障定位。
3.完成事故分析及事故恢復的繼電保護輔助決策。
4.實現繼電保護裝置的狀態檢修。
5.對線路縱聯保護退出引起的系統穩定問題進行分析,并提供解決方案。
6.對系統中運行的繼電保護裝置進行可靠性分析。
7.自動完成線路參數修正。
二、系統構成
站在電網的角度,我們來分析電網繼電保護綜合自動化系統獲取信息的途徑。電網的結構和參數,可以從調度中心獲得;一次設備的運行狀態及輸送潮流,可以通過EMS系統實時獲得;保護裝置的投退信息,由于必須通過調度下令,由現場執行,因此可以從調度管理系統獲得,并從變電站監控系統得到執行情況的驗證;保護裝置故障及異常,可以從微機保護裝置獲得;電網故障信息,可以從微機保護及微機故障錄波器獲得。
通過以上分析,可以看出,實現電網繼電保護綜合自動化系統的信息資源是充分的。為了更好的利用信息資源,應建立客戶/服務器體系的系統結構,按此結構將系統分解成幾個部分,由客戶機和服務器協作來實現上述七種主要功能。這樣就可以實現最佳的資源分配及利用,減少網絡的通信負擔,提高系統運行的總體性能。
客戶機設在變電站,主要實現以下功能:
1.管理與保護及故障錄波器的接口,實現對不同廠家的保護及故障錄波器的數據采集及轉換功能。在正常情況下巡檢保護的運行狀態,接收保護的異常報告。在電網發生故障后接收保護和故障錄波器的事故報告。
2.管理與監控系統主站的接口,查詢現場值班人員投退保護的操作。
3.管理與遠動主站的接口,將裝置異常、保護投退及其它關鍵信息通過遠動主站實時上送調度端。
4.執行數據處理、篩選、分析功能。實現對保護采集數據正確性的初步分析,篩選出關鍵信息。
5.管理及修改保護定值。
6.向服務器發出應用請求,并接收服務器反饋信息。
7.主動或按服務器要求傳送事故報告,執行服務器對指定保護和故障錄波器的查詢。
服務器設在調度端,可由一臺或多臺高性能計算機組成,主要實現以下功能:
1.向客戶機發送指令,接收并回答客戶機的請求。
2.接收客戶機傳送的事故報告。
3.控制對EMS系統共享數據庫的存取。獲得一次設備狀態、輸送潮流及客戶機通過遠動主站上送調度端的信息。
4.通過調度運行管理信息系統獲得調度員對保護的投退命令、設備檢修計劃等信息。
5.與繼電保護管理信息系統交換保護配置、定值、服役時間、各種保護裝置的正動率及異常率等信息,實現繼電保護裝置的可靠性分析。
6.執行故障計算程序、繼電保護定值綜合分析程序、事故分析程序、保護運行狀態監測程序、穩定分析程序等應用軟件。
在實現了變電站綜合自動化的廠站,客戶機可在保護工程師站的基礎上進行功能擴充,并成為變電站綜合自動化系統的組成部分。在沒有保護工程師站的廠站,可通過保護改造工程,建立變電站保護信息處理系統,使之成為客戶機。
由以上功能劃分可以看出,客戶機與服務器之間的數據交換量并不大,僅在電網發生故障后,由于與故障設備有關聯的廠站的客戶機需要向服務器傳送詳細的故障報告,才會出現較大的信息量。因此,客戶機和服務器之間的聯絡,在目前條件下,完全可以采用調制解調器進行異步通信。將來如有條件,建議盡量采用廣域網交換數據。
三、功能分析
1.實現繼電保護裝置對系統運行狀態的自適應。
電網繼電保護的整定計算十分復雜,由于傳統的繼電保護以預先整定、實時動作為特征,保護定值必須適應所有可能出現的運行方式的變化。假如一個變電站有15個元件,僅考慮本站檢修2個元件的組合方式就已經達到100多個,而周圍系統機組停運、500KV自耦變的檢修及系統開環對短路電流和分支系數的影響甚至可能比本站元件檢修還要大,它們均需做為組合方式加以考慮,這就使組合方式之多達到難以想像的數量。
為使預先整定的保護定值適應所有可能出現的運行方式的變化,必然出現以下問題:
A.縮短了保護范圍,延長了保護動作延時。
B.被迫退出某些受運行方式變化影響較大的保護。如四段式的零序電流保護僅能無配合的使用其最后兩段。
C.可能還存在由于運行方式考慮不周而出現失去配合。
D.被迫限制一次系統運行方式。
電網繼電保護綜合自動化系統可以徹底改變這種局面。只要在調度端的服務器安裝故障計算及繼電保護定值綜合分析程序,依靠從EMS系統獲得的系統一次設備的運行狀態,就可以迅速準確的判斷出當前繼電保護裝置整定值的可靠性,如出現部分后備保護定值不配合時,根據從調度管理系統獲得的線路縱聯保護及母差保護的投入情況,確定是否需要調整定值。如需要調整,可通過調度端服務器向變電站的客戶機下達指令,由客戶機動態修改保護定值,從而實現繼電保護裝置對系統運行狀態的自適應。以上所有計算分析工作,均依靠調度端服務器實時自動完成,這樣,繼電保護整定值就無需預先考慮那些出現機率很小的組合方式,從而解決困擾繼電保護整定計算工作的不同運行方式下可靠性與選擇性存在矛盾的問題。
目前,系統中運行的保護裝置可分為三類:第一類為非微機型保護;第二類為具備多個定值區并可切換的微機保護,一般不具備遠方改定值的功能;第三類為新型微機保護,具備遠方改定值的功能。對非微機型保護,在調度端可以將其設置為不能自動調整定值的保護,依靠周圍保護裝置的定值調整,實現與此類保護的配合。對第二類保護,可以事先設置多套整定值,調度端只是通過變電站客戶機,控制其在當前運行方式下采用那套整定值來實現定值的自適應。
為提高可靠性,保護定值的自適應可與調度系統的檢修申請相結合。當電網繼電保護綜合自動化系統從調度管理系統獲得計劃檢修工作申請后,即通過計算分析,事先安排定值的調整,并做相應的事故預想(如在檢修基礎上再發生故障時保護的配合關系計算),從而大大提高系統繼電保護裝置的效能和安全水平。
2.實現對各種復雜故障的準確故障定位。
目前的保護和故障錄波器的故障測距算法,一般分為故障分析法和行波法兩類。其中行波法由于存在行波信號的提取和故障產生行波的不確定性等問題而難以在電力生產中得到較好的運用。而故障分析法如果想要準確進行故障定位,必須得到故障前線路兩端綜合阻抗、相鄰線運行方式、與相鄰線的互感等信息,很顯然,僅利用保護或故障錄波器自己采集的數據,很難實現準確的故障定位。另外,對于比較復雜的故障,比如跨線異名相故障,單端分析手段已經無法正確判斷故障性質和故障距離,因此,往往出現誤報。
我們知道,得到的系統故障信息愈多,則對故障性質、故障位置的判斷和故障距離的檢測愈準確,因此,通過電網繼電保護綜合自動化系統,可以徹底解決這個問題。調度端數據庫中,已經儲備了所有一次設備參數、線路平行距離、互感情況等信息,通過共享EMS系統的數據,可以獲得故障前系統一次設備的運行狀態。故障發生后,線路兩端變電站的客戶機可以從保護和故障錄波器搜集故障報告,上送到服務器。調度端服務器將以上信息綜合利用,通過比較簡單的故障計算,就可確定故障性質并實現準確的故障定位。
3.完成事故分析及事故恢復的繼電保護輔助決策。
系統發生事故后,往往有可能伴隨著其它保護的誤動作。傳統的事故分析由人完成,受經驗和水平的影響,易出現偏差。由于電網繼電保護綜合自動化系統搜集了故障前后系統一次設備的運行狀態和變電站保護和故錄的故障報告,可以綜合線路兩端保護動作信息及同一端的其它保護動作信息進行模糊分析,并依靠保護和故錄的采樣數據精確計算,從而能夠迅速準確的做出判斷,實現事故恢復的繼電保護輔助決策。
當系統發生較大的事故時,由于在較短時間內跳閘線路較多,一般已經超過了繼電保護能夠適應的運行方式,此時保護可能已經處于無配合的狀態。此時進行事故恢復,不僅需要考慮一次運行方式的合理,還需要考慮保護是否能夠可靠并有選擇的切除故障。借助電網繼電保護綜合自動化系統,可以分析當前運行方式下保護的靈敏度及配合關系,并通過遠程改定值,完成繼電保護裝置對系統事故運行狀態的自適應。
4.實現繼電保護裝置的狀態檢修。
根據以往的統計分析數據,設計存在缺陷、二次回路維護不良、廠家制造質量不良往往是繼電保護裝置誤動作的主要原因。由于微機型繼電保護裝置具有自檢及存儲故障報告的能力,因此,可以通過電網繼電保護綜合自動化系統實現繼電保護裝置的狀態檢修。具體做法如下:
A.依靠微機保護的自檢功能,可以發現保護裝置內部的硬件異常。變電站的客戶機搜集到保護的異常報告后,立即向相應的調度端發出告警,從而使設備故障能夠得到及時處理,縮短保護裝置退出時間。
B.保護的開入量一般有開關輔助節點、通訊設備收信、合閘加速、啟動重合閘、其他保護動作等幾種,這些開入量對保護的可靠運行起關鍵作用。變電站的客戶機可以監視保護裝置的開關量變位報告。當發現保護的開入量發生變位時,可以通過查詢變電站一次系統狀態以及其他保護和錄波器的動作信息確定變位的正確性。這樣,就可以及早發現問題,預防一部分由設計缺陷或二次回路維護不良引起的誤動作。
C.為防止由于PT、CT兩點接地、保護裝置交流輸入回路異常、采樣回路異常等引起保護誤動作,可以由變電站的客戶機將保護啟動以后的報告進行分析,首先可以判斷取自同一CT的兩套保護采樣值是否一致,其次,可以判斷本站不同PT對同一故障的采樣值是否一致。另外,還可以將從保護故障報告中篩選出的故障電流基波穩態值及相位等信息上傳到調度端,與線路對側的數據進行比較,以發現PT兩點接地等問題。
通過以上措施,可以加強狀態檢修,相應延長定期檢修周期,使保護裝置工作在最佳狀態。同時,還可以提高維護管理水平,減輕繼電保護工作人員的勞動強度,減少因為人員工作疏漏引起的誤動作。
5.對線路縱聯保護退出引起的系統穩定問題進行分析,并提供解決方案。
隨著電網的發展,系統穩定問題日益突出。故障能否快速切除成為系統保持穩定的首要條件,這就對線路縱聯保護的投入提出較高要求。但是,在目前情況下,由于通道或其它因素的影響,導致線路雙套縱聯保護退出時,只能斷開線路以保證系統穩定和后備保護的配合。這種由于二次設備退出而影響一次設備運行的狀況是我們所不愿意看到的。
借助電網繼電保護綜合自動化系統,我們可以完成以下工作。
A.根據系統當前運行狀態校驗保護的配合關系。
B.根據線路兩側定值確定不同點故障保護的切除時間。
C.根據系統當前的運行方式、輸送潮流、系統及機組的參數,結合故障切除時間,判斷線路不同點故障時系統能否保持穩定。
D.判斷能否通過控制輸送潮流保持系統穩定。
E.反推系統保持穩定需要的故障切除時間。
F.通過遠程改定值,保證系統穩定及周圍系統后備保護的配合。
這樣,我們就可以大大減輕縱聯保護的退出給系統一次設備的運行帶來的影響,并提供縱聯保護的退出的整體解決方案。
6.對系統中運行的繼電保護裝置進行可靠性分析。
通過與繼電保護管理信息系統交換保護配置、服役時間、各種保護裝置的正動率及異常率等信息,電網繼電保護綜合自動化系統可以實現對繼電保護裝置的可靠性分析。特別是當某種保護或保護信號傳輸裝置出現問題,并暫時無法解決時,通過將此類裝置的可靠性評價降低,減輕系統對此類保護的依賴,通過遠程調整定值等手段,實現周圍系統保護的配合,防止因此類保護的拒動而擴大事故。
7.自動完成線路參數修正。
由于征地的限制,新建線路往往與原有線路共用線路走廊,線路之間電磁感應日益增大,造成新線路參數測試的不準確以及原有線路參數的變化。現在,依靠電網繼電保護綜合自動化系統,可以將每次故障周圍系統保護的采樣數據進行收集,利用線路兩端的故障電流、故障電壓,校核并修正線路參數,實現線路參數的自動在線測量,從而提高繼電保護基礎參數的可靠性,保證系統安全。
四、實現本系統的難點分析
1.管理問題
從技術上說,實現電網繼電保護綜合自動化系統的條件已經成熟,無論是變電站客戶機對保護信息的搜集、信息的網絡傳輸還是調度端服務器對EMS系統共享數據的讀取、故障及穩定分析計算,都可以得到解決。主要的實施難度在于此系統需要綜合繼電保護、調度、方式、遠動、通信以及變電站綜合自動化等各個專業的技術,并且涉及到控制運行設備,其它專業一般不愿牽扯其中,因此只有解決好管理問題,才可能順利實施。例如,目前變電站客戶機對信息的搜集,完全可以也應該納入到變電站綜合自動化系統,但是,由于管理界面的劃分,有些運行單位希望保護專業獨立組網搜集信息,這樣就造成資源的分割和浪費,不利于今后對系統的擴展。為了保證電力系統的安全運行,希望在將來的保護設計導則中,對此類問題統一予以規范。
2.安全性問題
由于電網繼電保護綜合自動化系統的功能強大,并且可以控制運行設備,與電網的安全穩定運行息息相關,因此在設計之初,就必須對系統的安全性問題給予足夠重視。可以說,安全性解決的好壞,將是本系統能否運用的關鍵。初步設想,調度端服務器必須采用雙機熱備用方式保證硬件安全;通過遠方修改保護定值時,客戶機必須通過加密的數字簽名核實調度端傳送定值的可信度,并通過校驗碼及數據回送保證定值的可靠性。并且,當客戶機向保護傳送定值時,必須不能影響保護的正常性能。在這方面,還需要做大量的工作。
3.規約問題
繼電保護對于維護電力系統信息數據的安全性具有非常重要的作用,同時還可以有效的減少或是避免外界因素對裝置所帶來的干擾,確保了裝置的安全,而且通過繼電保護裝置,可以在電力系統運行過程中實現有效的防范監測,確保了電力系統運行的穩定性和可靠性。
1.2投資較少,安裝便捷
繼電保護裝置由于自身重量較小,裝置小巧,易于安裝,所以在電力行業施工過程中,有效的減少了所占據的空間,為施工的順利進行創造了良好的條件。同時在安裝過程中也有效的提高了操作的效率,減少了成本的投入,只需按照電氣圖紙安裝人員即可完成繼電裝置的安裝工作。
1.3檢測故障及防范
電力系統上安裝繼電保護裝置后,一旦系統中有設備或是元器件發生故障,則繼電保護裝置則會及時發出預警,提醒值班人員進行處理。同時在發生故障的第一時間內,繼電保護裝置還會向斷路器發出跳閘等指令,對故障線路進行及時切斷,有效的保障了正常線路的運行,減少了故障所給設備及元器件所還來的損失,繼電保護裝置在電力系統運行過程中具有較高的故障防范能力,具有不可替代性。
2繼電保護故障處理的原則
2.1處理繼電保護故障時要保持正確、冷靜的態度。
電力系統的發電機等設備在運行過程中,繼電保護裝置的連接片要根據運行方式的變化而進行相應的投、退處理。在進行這兩項處理時要求工作人員同時進行,而且要經過細致的辨別清楚后,才能夠操作。而且對于跳閘回路的連接片來說,只有相應的開關在運行的過程中才能夠投入。
2.2能夠根據信號狀態準確判斷故障發生點。
在繼電保護現場中出現的光子牌信號、事件記錄以及故障錄波器所采集到的圖形、繼電保護裝置的燈光信號或者其他信號等都是對繼電保護的故障進行處理的基礎依據。所以,在對繼電保護的故障進行處理之前,要對這些信號進行分析,判斷出信號處的故障和真偽。
2.3對人為故障要給以緊急處理。
在繼電保護裝置對故障進行處理時,人為故障的處理具有較大的難度,也是一個非常關鍵的問題。在繼電保護裝置處理故障過程中,根據其所提供的故障信息無法找到導致故障發生的原因時,或者當斷路器動作后沒有發生預警信號時,這時無法判斷出導致故障的原因是人為因素還是設備、裝置自身的故障,所以給處理帶來了較大的難度。再加之繼電保護現場中,部分運行人員由于專業技能水平不高,工作缺乏責任心,對故障不重視,不能及時對存在的故障進行處理,操作過程中也極易發生誤碰等情況,從而導致人為故障增加。這就需要對現場人為故障進行如實反映,這樣對于能夠為工作人員進行故障處理提供必要的依據。而且對于現場這類人為故障的原因及處理方式也要進行如實的記錄,確保類似故障不再發生。
3差動保護二次回路檢修方法
3.1負荷檢修
一旦負荷過大時,則會導致電流互感器處于超負荷運行狀態下,這樣會導致電流互感器的使用壽命降低,所以需要利用差動保護來對負荷進行嚴格控制,根據實際的需要,來適當的對電流互感器的勵磁電流進行降低,通過對電纜的電阻及選擇弱電控制用電流互感器等來降低二次負荷,同時還要對互感器的實際運行狀態進行定期檢查。
3.2質量檢修
目前電流互感器的種類較多,市場上的產品較為多樣化,這樣就需要在實際購買過程中需要選擇與系統保護方式相適應的電流互感器。在差動保護過程中,當繼電保護裝置的測電流過大時,則需要選擇帶小氣隙的電流互感器,由于該種類的電流互感器的鐵芯剩磁小,有利于差動保護裝置性能的提升,而且其勵磁電流也較小,能夠有效的實現對失衡電流的有效控制。
3.3電流檢修
在差動保護實施過程中,電流互感器作為差動保護效果的重要元件,所以需要對互感器的使用型號進行科學的選擇,通常D級電流互感器最為適合進行差動保護。當電流經過差動保護裝置的穩態短路電流時,一旦電流達到最大值,則需要有效的控制好差動保護回路的二次負荷,使其誤差在規定的范圍內。
目前,繼電保護裝置的配置有很多,但大部分繼電保護裝置是用于保護功能,在數據共享和分析處理方面應用比較少,導致當電網系統發生故障后,沒有有效的技術手段進行保護動作情況、故障數據信息上報控制中心,需要變電運行的工作人員口頭上報數據信息,然后進行故障分析處理。為改善這種現狀,可以建立繼電保護及故障信息管理成系統,實現在不影響繼電保護裝置、故障處理裝置等設備正常運行的情況,形成條理化的報文,將電網運行狀況及故障數據信息傳遞給調度終端。繼電保護裝置和故障信息的實時聯網,匯總出來的數據信息對電網的深入研究有十分重要的作用。繼電保護及故障信息管理系統能幫助電力運行管理部門掌握繼電保護裝置的運行狀況和電力系統故障的演變情況,同時還能對故障的保護動作進行綜合分析,這極大地提高了故障分析能力和事故處理能力,為快速恢復電力系統的穩定運行提供了保障。在電力調度終端,還能利用該系統對保護裝置進行管理,對故障信息進行綜合分析、處理,實現繼電保護裝置的自動化、網絡化運行管理,繼電保護及故障信息管理系統為分析故障原因、查找故障點、繼電保護裝置動作行為分析等提供了重要的依據,為電網系統的穩定運行提供了保障。
2繼電保護及故障信息管理系統的結構及功能
繼電保護及故障信息管理系統是由主站和多個子站系統組成的,其中子站系統主要負責對繼電保護裝置、安全自動裝置、故障處理裝置等進行監視、匯總,并將這些裝置的運行狀態、故障信息、動作保護等信息收集傳輸到主站系統中;主站系統主要負責將子站系統收集的數據信息分配到相應的功能模塊進行處理,并將這些信息提交到相應的高級應用模塊中。繼電保護及故障信息管理系統主要具有以下功能:對電網保護設備、錄波設備等進行監測、控制;對運行異常的設備進行監測;自動分析電網系統的故障,并準確、快速地找出故障區域和故障點;對繼電保護動作進行分析;實現繼電保護管理的網絡化、自動化、規范化、標準化。
3繼電保護及故障信息管理系統的設計原則
根據繼電保護及故障信息管理系統的特點,在進行系統設計時,要遵循以下原則:標準化、規范化設計原則,在設計系統過程中要采用國際標準,從而與其他系統進行良好的接口,確保系統的開放性;分層分布式設計,系統的設計要以子站系統為中心,利用通信網絡將本地監控、主站系統、子站系統連接起來,為有利于新功能的擴展,軟件系統要采用模塊化結構。
4繼電保護及故障信息管理系統子站的建立
4.1子站系統的設計目標
子站系統的設計目標主要包括以下五點:
4.1.1故障數據緩沖處理:在子站系統內部配置具有集成數據庫的應用的處理系統,使得子站系統具有故障數據緩沖處理能力,從而提高繼電保護及故障信息管理系統的可靠性。
4.1.2故障信息預處理:子站系統能對相關故障信息進行過濾故障信息等預處理,這樣不僅能降低主站系統處理數據信息的壓力,還能提高系統處理信息的效率。
4.1.3匯總、轉發數據信息:子站系統能將繼電保護裝置、故障處理裝置等二次設備和主站系統連接起來,能在節省通信資源的條件下,將各種數據信息匯總并轉發到主站系統。
4.1.4遠程維護功能:在條件允許的情況下,子站系統能進行遠程維護,為無人看守的變電站子系統運行管理帶來極大的方便。
4.1.5自檢及就地功能:子站系統能利用自檢功能產生自檢報告,同時將自檢報告轉發到主站系統中;用戶可以通過子站后臺、計算機、站內監控后臺等方式和子站系統的維護接口連接,對子站系統進行實時維護。
4.2子站系統軟件
系統設計繼電保護及故障信息管理系統的子站系統軟件主要由端口處理線程、主處理進程、數據庫管理系統三部分構成。當子站系統啟動后,主處理進程能根據系統的配置,自動啟動端口處理線程,系統的通信端口會和端口處理線程對應起來,端口處理進程會根據自身的配置對相應的通信端口進行確認,并配置規約處理程序。主處理進程是子站軟件系統復位啟動時,最重要的入口程序之一,主要功能是根據系統配置自動啟動,對端口處理進程進行管理,實現端口處理進程、事件處理器、數據庫管理系統之間的異步通信,完成信息中轉。端口處理線程匯總的數據信息會轉發到數據庫系統中進行統一管理,從而實現故障信息的處理和共享,保證繼電保護及故障信息管理系統能高效、可靠地進行信息處理,子站數據庫系統配置有大容量的故障信息處理功能和數據存檔功能。
5繼電保護及故障信息管理系統主站系統的建立
繼電保護及故障信息管理系統的主站系統主要由數據管理子系統、主站數據庫、統計和故障分析子系統三部分組成,下面分別對這三部分進行分析:
5.1數據管理子系統
數據管理子系統包括對主站運行進行監視及對圖像、網絡等進行管理,數據管理子系統主要由圖形處理系統和圖形運行系統兩個子模塊組成,圖形處理系統能通過界面的繪圖工具生成電氣主接線圖、電力系統區位分布圖;圖形運行系統能查看各主站接線圖顯示的故障點,并結合故障信息數據控制圖形系統的運行,數據管理子系統主要用于微機繼電保護動作情況,對故障過程進行重演及統計歷史故障信息。
5.2主站數據庫
主站數據庫主要是對繼電保護的數據模型、版本應用模塊等進行統一管理,同時提供維護、生成、修改功能。主站數據庫由靜態數據庫、動態數據庫、歷史數據庫等幾個數據庫構成,其中靜態數據庫儲存的信息大多為固定的數據,動態數據庫多儲存動態變化的數據信息,歷史數據庫主要為了保護動態數據庫的運作效率,為主站系統的維護提供方便。
5.3統計和故障分析
子系統統計和故障分析子系統主要包括故障錄波報文、故障測距報文等兩個模塊,故障錄波報文是以COMTRADE格式生成的,故障錄波信息數據分析是在故障錄波器生成的故障信息報文上進行,能對整個電力系統的故障信息進行分析,在故障狀態下,能實現故障信息實時分析、故障信息網頁生成、數據統計等功能,同時還能對主站系統進行日常繼電保護管理、定值校驗、保護整定計算、故障數據分析、故障距離測定等應用。
一、繼電保護發展現狀
電力系統的飛速發展對繼電保護不斷提出新的要求,電子技術、計算機技術與通信技術的飛速發展又為繼電保護技術的發展不斷地注入了新的活力,因此,繼電保護技術得天獨厚,在40余年的時間里完成了發展的4個歷史階段。
建國后,我國繼電保護學科、繼電保護設計、繼電器制造工業和繼電保護技術隊伍從無到有,在大約10年的時間里走過了先進國家半個世紀走過的道路。50年代,我國工程技術人員創造性地吸收、消化、掌握了國外先進的繼電保護設備性能和運行技術[1],建成了一支具有深厚繼電保護理論造詣和豐富運行經驗的繼電保護技術隊伍,對全國繼電保護技術隊伍的建立和成長起了指導作用。阿城繼電器廠引進消化了當時國外先進的繼電器制造技術,建立了我國自己的繼電器制造業。因而在60年代中我國已建成了繼電保護研究、設計、制造、運行和教學的完整體系。這是機電式繼電保護繁榮的時代,為我國繼電保護技術的發展奠定了堅實基礎。
自50年代末,晶體管繼電保護已在開始研究。60年代中到80年代中是晶體管繼電保護蓬勃發展和廣泛采用的時代。其中天津大學與南京電力自動化設備廠合作研究的500kV晶體管方向高頻保護和南京電力自動化研究院研制的晶體管高頻閉鎖距離保護,運行于葛洲壩500kV線路上[2],結束了500kV線路保護完全依靠從國外進口的時代。
在此期間,從70年代中,基于集成運算放大器的集成電路保護已開始研究。到80年代末集成電路保護已形成完整系列,逐漸取代晶體管保護。到90年代初集成電路保護的研制、生產、應用仍處于主導地位,這是集成電路保護時代。在這方面南京電力自動化研究院研制的集成電路工頻變化量方向高頻保護起了重要作用[3],天津大學與南京電力自動化設備廠合作研制的集成電路相電壓補償式方向高頻保護也在多條220kV和500kV線路上運行。
我國從70年代末即已開始了計算機繼電保護的研究[4],高等院校和科研院所起著先導的作用。華中理工大學、東南大學、華北電力學院、西安交通大學、天津大學、上海交通大學、重慶大學和南京電力自動化研究院都相繼研制了不同原理、不同型式的微機保護裝置。1984年原華北電力學院研制的輸電線路微機保護裝置首先通過鑒定,并在系統中獲得應用[5],揭開了我國繼電保護發展史上新的一頁,為微機保護的推廣開辟了道路。在主設備保護方面,東南大學和華中理工大學研制的發電機失磁保護、發電機保護和發電機?變壓器組保護也相繼于1989、1994年通過鑒定,投入運行。南京電力自動化研究院研制的微機線路保護裝置也于1991年通過鑒定。天津大學與南京電力自動化設備廠合作研制的微機相電壓補償式方向高頻保護,西安交通大學與許昌繼電器廠合作研制的正序故障分量方向高頻保護也相繼于1993、1996年通過鑒定。至此,不同原理、不同機型的微機線路和主設備保護各具特色,為電力系統提供了一批新一代性能優良、功能齊全、工作可靠的繼電保護裝置。隨著微機保護裝置的研究,在微機保護軟件、算法等方面也取得了很多理論成果。可以說從90年代開始我國繼電保護技術已進入了微機保護的時代。
二、繼電保護的未來發展
繼電保護技術未來趨勢是向計算機化,網絡化,智能化,保護、控制、測量和數據通信一體化發展。
1計算機化
隨著計算機硬件的迅猛發展,微機保護硬件也在不斷發展。原華北電力學院研制的微機線路保護硬件已經歷了3個發展階段:從8位單CPU結構的微機保護問世,不到5年時間就發展到多CPU結構,后又發展到總線不出模塊的大模塊結構,性能大大提高,得到了廣泛應用。華中理工大學研制的微機保護也是從8位CPU,發展到以工控機核心部分為基礎的32位微機保護。
南京電力自動化研究院一開始就研制了16位CPU為基礎的微機線路保護,已得到大面積推廣,目前也在研究32位保護硬件系統。東南大學研制的微機主設備保護的硬件也經過了多次改進和提高。天津大學一開始即研制以16位多CPU為基礎的微機線路保護,1988年即開始研究以32位數字信號處理器(DSP)為基礎的保護、控制、測量一體化微機裝置,目前已與珠海晉電自動化設備公司合作研制成一種功能齊全的32位大模塊,一個模塊就是一個小型計算機。采用32位微機芯片并非只著眼于精度,因為精度受A/D轉換器分辨率的限制,超過16位時在轉換速度和成本方面都是難以接受的;更重要的是32位微機芯片具有很高的集成度,很高的工作頻率和計算速度,很大的尋址空間,豐富的指令系統和較多的輸入輸出口。CPU的寄存器、數據總線、地址總線都是32位的,具有存儲器管理功能、存儲器保護功能和任務轉換功能,并將高速緩存(Cache)和浮點數部件都集成在CPU內。
電力系統對微機保護的要求不斷提高,除了保護的基本功能外,還應具有大容量故障信息和數據的長期存放空間,快速的數據處理功能,強大的通信能力,與其它保護、控制裝置和調度聯網以共享全系統數據、信息和網絡資源的能力,高級語言編程等。這就要求微機保護裝置具有相當于一臺PC機的功能。在計算機保護發展初期,曾設想過用一臺小型計算機作成繼電保護裝置。由于當時小型機體積大、成本高、可靠性差,這個設想是不現實的。現在,同微機保護裝置大小相似的工控機的功能、速度、存儲容量大大超過了當年的小型機,因此,用成套工控機作成繼電保護的時機已經成熟,這將是微機保護的發展方向之一。天津大學已研制成用同微機保護裝置結構完全相同的一種工控機加以改造作成的繼電保護裝置。這種裝置的優點有:(1)具有486PC機的全部功能,能滿足對當前和未來微機保護的各種功能要求。(2)尺寸和結構與目前的微機保護裝置相似,工藝精良、防震、防過熱、防電磁干擾能力強,可運行于非常惡劣的工作環境,成本可接受。(3)采用STD總線或PC總線,硬件模塊化,對于不同的保護可任意選用不同模塊,配置靈活、容易擴展。
繼電保護裝置的微機化、計算機化是不可逆轉的發展趨勢。但對如何更好地滿足電力系統要求,如何進一步提高繼電保護的可靠性,如何取得更大的經濟效益和社會效益,尚須進行具體深入的研究。
2網絡化
計算機網絡作為信息和數據通信工具已成為信息時代的技術支柱,使人類生產和社會生活的面貌發生了根本變化。它深刻影響著各個工業領域,也為各個工業領域提供了強有力的通信手段。到目前為止,除了差動保護和縱聯保護外,所有繼電保護裝置都只能反應保護安裝處的電氣量。繼電保護的作用也只限于切除故障元件,縮小事故影響范圍。這主要是由于缺乏強有力的數據通信手段。國外早已提出過系統保護的概念,這在當時主要指安全自動裝置。因繼電保護的作用不只限于切除故障元件和限制事故影響范圍(這是首要任務),還要保證全系統的安全穩定運行。這就要求每個保護單元都能共享全系統的運行和故障信息的數據,各個保護單元與重合閘裝置在分析這些信息和數據的基礎上協調動作,確保系統的安全穩定運行。顯然,實現這種系統保護的基本條件是將全系統各主要設備的保護裝置用計算機網絡聯接起來,亦即實現微機保護裝置的網絡化。這在當前的技術條件下是完全可能的。
對于一般的非系統保護,實現保護裝置的計算機聯網也有很大的好處。繼電保護裝置能夠得到的系統故障信息愈多,則對故障性質、故障位置的判斷和故障距離的檢測愈準確。對自適應保護原理的研究已經過很長的時間,也取得了一定的成果,但要真正實現保護對系統運行方式和故障狀態的自適應,必須獲得更多的系統運行和故障信息,只有實現保護的計算機網絡化,才能做到這一點。
對于某些保護裝置實現計算機聯網,也能提高保護的可靠性。天津大學1993年針對未來三峽水電站500kV超高壓多回路母線提出了一種分布式母線保護的原理[6],初步研制成功了這種裝置。其原理是將傳統的集中式母線保護分散成若干個(與被保護母線的回路數相同)母線保護單元,分散裝設在各回路保護屏上,各保護單元用計算機網絡聯接起來,每個保護單元只輸入本回路的電流量,將其轉換成數字量后,通過計算機網絡傳送給其它所有回路的保護單元,各保護單元根據本回路的電流量和從計算機網絡上獲得的其它所有回路的電流量,進行母線差動保護的計算,如果計算結果證明是母線內部故障則只跳開本回路斷路器,將故障的母線隔離。在母線區外故障時,各保護單元都計算為外部故障均不動作。這種用計算機網絡實現的分布式母線保護原理,比傳統的集中式母線保護原理有較高的可靠性。因為如果一個保護單元受到干擾或計算錯誤而誤動時,只能錯誤地跳開本回路,不會造成使母線整個被切除的惡性事故,這對于象三峽電站具有超高壓母線的系統樞紐非常重要。
由上述可知,微機保護裝置網絡化可大大提高保護性能和可靠性,這是微機保護發展的必然趨勢。
3保護、控制、測量、數據通信一體化
在實現繼電保護的計算機化和網絡化的條件下,保護裝置實際上就是一臺高性能、多功能的計算機,是整個電力系統計算機網絡上的一個智能終端。它可從網上獲取電力系統運行和故障的任何信息和數據,也可將它所獲得的被保護元件的任何信息和數據傳送給網絡控制中心或任一終端。因此,每個微機保護裝置不但可完成繼電保護功能,而且在無故障正常運行情況下還可完成測量、控制、數據通信功能,亦即實現保護、控制、測量、數據通信一體化。
目前,為了測量、保護和控制的需要,室外變電站的所有設備,如變壓器、線路等的二次電壓、電流都必須用控制電纜引到主控室。所敷設的大量控制電纜不但要大量投資,而且使二次回路非常復雜。但是如果將上述的保護、控制、測量、數據通信一體化的計算機裝置,就地安裝在室外變電站的被保護設備旁,將被保護設備的電壓、電流量在此裝置內轉換成數字量后,通過計算機網絡送到主控室,則可免除大量的控制電纜。如果用光纖作為網絡的傳輸介質,還可免除電磁干擾。現在光電流互感器(OTA)和光電壓互感器(OTV)已在研究試驗階段,將來必然在電力系統中得到應用。在采用OTA和OTV的情況下,保護裝置應放在距OTA和OTV最近的地方,亦即應放在被保護設備附近。OTA和OTV的光信號輸入到此一體化裝置中并轉換成電信號后,一方面用作保護的計算判斷;另一方面作為測量量,通過網絡送到主控室。從主控室通過網絡可將對被保護設備的操作控制命令送到此一體化裝置,由此一體化裝置執行斷路器的操作。1992年天津大學提出了保護、控制、測量、通信一體化問題,并研制了以TMS320C25數字信號處理器(DSP)為基礎的一個保護、控制、測量、數據通信一體化裝置。
4智能化
近年來,人工智能技術如神經網絡、遺傳算法、進化規劃、模糊邏輯等在電力系統各個領域都得到了應用,在繼電保護領域應用的研究也已開始[7]。神經網絡是一種非線性映射的方法,很多難以列出方程式或難以求解的復雜的非線性問題,應用神經網絡方法則可迎刃而解。例如在輸電線兩側系統電勢角度擺開情況下發生經過渡電阻的短路就是一非線性問題,距離保護很難正確作出故障位置的判別,從而造成誤動或拒動;如果用神經網絡方法,經過大量故障樣本的訓練,只要樣本集中充分考慮了各種情況,則在發生任何故障時都可正確判別。其它如遺傳算法、進化規劃等也都有其獨特的求解復雜問題的能力。將這些人工智能方法適當結合可使求解速度更快。天津大學從1996年起進行神經網絡式繼電保護的研究,已取得初步成果[8]。可以預見,人工智能技術在繼電保護領域必會得到應用,以解決用常規方法難以解決的問題。
三、結束語
建國以來,我國電力系統繼電保護技術經歷了4個時代。隨著電力系統的高速發展和計算機技術、通信技術的進步,繼電保護技術面臨著進一步發展的趨勢。國內外繼電保護技術發展的趨勢為:計算機化,網絡化,保護、控制、測量、數據通信一體化和人工智能化,這對繼電保護工作者提出了艱巨的任務,也開辟了活動的廣闊天地。
參考文獻
1王梅義.高壓電網繼電保護運行技術.北京:電力工業出版社,1981
2HeJiali,ZhangYuanhui,YangNianci.NewTypePowerLineCarrierRelayingSystemwithDirectionalComparisonforEHVTransmissionLines.IEEETransactionsPAS-103,1984(2)
3沈國榮.工頻變化量方向繼電器原理的研究.電力系統自動化,1983(1)
4葛耀中.數字計算機在繼電保護中的應用.繼電器,1978(3)
5楊奇遜.微型機繼電保護基礎.北京:水利電力出版社,1988
1.2繼電保護對于光纖通道延遲的要求對于電力系統的繼電保護來說,相關的標準對于繼電保護動作發生的具體時間有一定的要求。繼電保護的“四性”給出了各種保護方案中傳遞信息的最大允許時間,其中縱聯保護對故障發生時的位置判斷只與電氣信號的值有關,時間長短與光纖通道的延遲無關。但在對故障發生地點的判斷上是基于本側的電氣信息進行分析的,當得出故障發生在本側時還要分析故障的方向。其次,縱聯保護是根據相關的信息來分析故障發生在對側的方向,只有保障兩條分析都在同一方向時,才能確定故障發生的區域。由此可見,電力系統的繼電保護時間就縱聯保護來說是有疊加現象的。而就縱差保護來說,光纖延遲對繼電保護的相應時間也分為兩個因素。一方面,在繼電保護系統對電氣信息進行分析和計算的過程中,當發現電流并不等于兩側電流的總和時,實際上接收到的是對邊電流與同一時刻本側電流的和。另一方面,在本側發生保護動作前,不僅需要本側的差動數據滿足,更需要對側的數據保障,以避免突然斷線引起的錯誤動作,從而影響電力系統運行。
1.3專用光纖通信方式對于電力系統來說,利用光纖通信需要為繼電保護裝置敷設專用的光纖通道,并且在此通道中只允許傳輸繼電保護信息。因光的收、發接口工作距離限制和敷設的光纜成本的限制,用于繼電保護裝置的通信距離通常在100km以內。專用通道由光纜中斷箱直接接入繼電保護設備的光收發口,省去了復雜的中間環節,不需要其他的專業設備,就能實現簡單、可靠的信息傳輸,管理起來也比較方便,因此被逐漸運用到了電力系統繼電保護系統中。
2光纖通信通道異常對機電保護的影響
2.1線路交互錯位影響在實際的電力系統運行過程中,如果出現光纖線路非致命性的故障時,線路自身擁有功能能夠進行自動檢查與修復,這也就是常說的可自愈網絡。通過線路交互錯位的方式,當系統的主線路出現了故障需要進行及時檢修時,系統將會自動把負荷調整到備用的線路上,再通過備用的線路將數據傳輸到調度中心,等到主線路的故障得到修復并調整至原來的狀態后即可恢復。
2.2M線路時限參數選擇影響在電力系統運行的過程中,輸送線路或者相應中斷的異常運行很可能給SDH輸送網絡造成影響。通常,這種影響主要表現在線路交互錯位、線路錯誤率變高兩個層面,而如果不及時針對存在的異常進行處理,很有可能導致整個線路無法正常運行。由上述可知,SDH輸送網絡相較于傳統的相比擁有無法超越的優勢,但在實際的運用過程中,不能完全按照該種網絡系統中的PDH分支線路輸出信號來調整時限。因分支線路中一旦出現VC信號極易導致輸出信號過大波動而難以精準對故障進行定位,其實,進行時限調整的目的就是為了將即時網絡時間信息與數據信息統一傳送至分支線路中。具體可參考圖1所示。就我國目前的形式來看,繼電保護裝置就是為了實現線路進出信息的一致性,一般通過在PHD分支線路上附上實現控制設備來實現。對于這種情況,線路出口與入口上起到保護作用的PCM需要保持一致的高度,否則將會影響到保護裝置的正常使用。為了保證線路保護時限的一致性,通過更改時間記錄、校正記錄信息以及更正系統時間等方式來進行操作,保證線路兩端的響應一直。更改事件記錄的方式需要通過限流信息時差和線路兩端時間記錄時差的對比,并根據對比的結果進行分析,以修正輔助裝置的操作時間。
2.3誤碼產生的影響相較于電力線路或者微波通道來說,光纖通信通道不僅傳輸的質量高、誤碼率低,且頻帶寬、傳輸信息的容量較大、抗電磁干擾能力強。事實上,光纖通信通道技術也會因長時間持續工作或者其他原因影響下,有一定的誤碼情況。包括各種噪聲源的印象、色散引起的碼間干擾、定位抖動產生的誤碼以及復用器、較差連接設備等設備都有可能引起誤碼。而具體來說,通道對于保護判據產生的影響有三個方面。第一,誤碼會導致報文內容或CRC校驗值的某一個值發生錯誤,最終導致報文不能通過校驗。第二,誤碼可能使得報文頭或尾部的某一個值發生錯誤,對報文的完整性進行破壞,導致通信控制芯片出現“報文出錯”現象。此外,一般來說報文的比特位數應是8的整數倍,如果出現通道滑碼,可能導致比特位數的增加或者丟失,從而導致通信控制芯片出現“非完整報文”的現象。在電力系統的縱差保護中,一旦檢測出非完整報文等問題,則必須重新對通道時延進行檢測,以保證兩側裝置采集的數據實現同步。一方面對于單個的隨機誤碼而言,因其可能影響報文的完整性,從而使得線路的縱差保護沒有發生變化,也需要重新啟動新的同步過程。另一方面,線路的縱聯距離與方向保護則需要交換數據,這種數據只需要允許信號而不會有通道時延一致上的要求,且不必要同步兩側裝置的采樣時刻。誤碼可能對當前的通信報文正確性產生了一定的影響,但也不會影響后續通信報文的使用。